Other Names
Rabbit Coagulation Factor XII ELISA kit
F12; FXII; HAF; Contact Factor; Hageman Factor
Research Area
FXII; HAF; Contact Factor; Hageman Factor
Background
This gene encodes the coagulation factor XIII A subunit. Coagulation factor XIII is the last zymogen to become activated in the blood coagulation cascade. Plasma factor XIII is a heterotetramer composed of 2 A subunits and 2 B subunits. The A subunits have catalytic function, and the B subunits do not have enzymatic activity and may serve as plasma carrier molecules. Platelet factor XIII is comprised only of 2 A subunits, which are identical to those of plasma origin. Upon cleavage of the activation peptide by thrombin and in the presence of calcium ion, the plasma factor XIII dissociates its B subunits and yields the same active enzyme, factor XIIIa, as platelet factor XIII. This enzyme acts as a transglutaminase to catalyze the formation of gamma-glutamyl-epsilon-lysine crosslinking between fibrin molecules, thus stabilizing the fibrin clot. It also crosslinks alpha-2-plasmin inhibitor, or fibronectin, to the alpha chains of fibrin. Factor XIII deficiency is classified into two categories: type I deficiency, characterized by the lack of both the A and B subunits; and type II deficiency, characterized by the lack of the A subunit alone. These defects can result in a lifelong bleeding tendency, defective wound healing, and habitual abortion.
Product Name |
F12 ELISA |
Species |
Rabbit |
Product Size |
96/48 Tests |
Concentration |
0.5-10 ng/mL |
Sensitivity |
0.07 ng/mL |
Principle |
Competitive ELISA |
Sample Volume |
100 ul |
Assay Time |
90 minutes |
Platform |
Microplate Reader |
Conjugate |
HRP |
Detection Method |
Colorimetric |
Storage |
2-8°C |
|
For Research use only
Four parameter Logisticcurve regression
Formular: y = (A - D) / [1 + (x/C)^B] + D
A = 1.64300 B = 0.80240 C = 1.28822 D = -0.08874 r^2 = 0.99950 |
1. Protocols for ELISA
1) Direct ELISA
2) Direct ELISA Using Fluorescent Substrate
3) Indirect ELISA
4) Sandwich ELISA
2. Protocols for IHC ICC
1) Determining if the antibody binds only phosphorylated protein (WB or IHC)
2) Double immunofluorescence-sequential protocol
3) Double immunofluorescence-simultaneous protocol
4) Fixation and Permeabilization In IHC ICC
5) Glycol Methalacrylate Acrylic Resin Embedding For IHC
9) Immunohistochemistry (IHC-Fr) - Frozen Sections
3. Protocols for WB
4) S-100 Mitochondrial Fractionation
5) Stripping for Reprobing Western Blots
7) Western Blotting - A Beginner's Guide
8) Western Blotting of Phospho-Proteins
9) Western Blotting Using Antibodies Against Histone Proteins
4. Protocols for IP
2) Using IgM antibodies for IP
5. Protocols for FACS
1) Direct Staining Protocol (Cell Surface Staining)
3) Flow Cytometry Whole Blood Samples-Red Blood Cell Lysis
4) Indirect Staining Protocol (Cell Surface Staining)
6) Recommended Controls for FACS
6. Protocols for ELISPOT
1) ELISPOT
1. Protocols for ELISA
1) Direct ELISA
2) Direct ELISA Using Fluorescent Substrate
3) Indirect ELISA
4) Sandwich ELISA
2. Protocols for IHC ICC
1) Determining if the antibody binds only phosphorylated protein (WB or IHC)
2) Double immunofluorescence-sequential protocol
3) Double immunofluorescence-simultaneous protocol
4) Fixation and Permeabilization In IHC ICC
5) Glycol Methalacrylate Acrylic Resin Embedding For IHC
9) Immunohistochemistry (IHC-Fr) - Frozen Sections
3. Protocols for WB
4) S-100 Mitochondrial Fractionation
5) Stripping for Reprobing Western Blots
7) Western Blotting - A Beginner's Guide
8) Western Blotting of Phospho-Proteins
9) Western Blotting Using Antibodies Against Histone Proteins
4. Protocols for IP
2) Using IgM antibodies for IP
5. Protocols for FACS
1) Direct Staining Protocol (Cell Surface Staining)
3) Flow Cytometry Whole Blood Samples-Red Blood Cell Lysis
4) Indirect Staining Protocol (Cell Surface Staining)
6) Recommended Controls for FACS
6. Protocols for ELISPOT
1) ELISPOT