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centrations. The association of reduced white matter apop-
tosis and astrogliosis after repeated low-dose LPS finishing 
24 h but not 4 h before cerebral ischemia, with central and 
peripheral induction of IFN-β, suggests the possibility that 
IFN-β may be an important mediator of endogenous neuro-
protection in the developing brain.  © 2015 S. Karger AG, Basel 

 Introduction 

 Cerebral palsy is one of the most devastating conse-
quences of hypoxia-ischemia (HI) before birth and is very 
common in preterm infants  [1] . It is now recognized that 
the etiology of preterm brain injury is likely multifacto-
rial. While HI is likely to be important, there is now com-
pelling evidence that exposure to infection and secondary 
inflammation, both before and after birth, is highly asso-
ciated with preterm brain injury and deficits in neuronal 
architecture and function in later life  [2–9] . 

  The clinical relationship between injury and infection 
is complex and closely intertwined with placental insuf-
ficiency  [10–12] . This complexity is mirrored by preclin-
ical evidence in the neonatal rat that single-dose exposure 
to lipopolysaccharide (LPS) can either protect or sensitize 
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 Abstract 

 Acute exposure to subclinical infection modulates subse-
quent hypoxia-ischemia (HI) injury in a time-dependent 
manner, likely by cross-talk through Toll-like receptors 
(TLRs), but the specific pathways are unclear in the preterm-
equivalent brain. In the present study, we tested the hypoth-
esis that repeated low-dose exposure to lipopolysaccharide 
(LPS) before acute ischemia would be associated with induc-
tion of specific TLRs that are potentially neuroprotective. Fe-
tal sheep at 0.65 gestation (term is  ∼ 145 days) received in-
travenous boluses of low-dose LPS for 5 days (day 1, 50 ng/
kg; days 2–5, 100 ng/kg) or the same volume of saline. Either 
4 or 24 h after the last bolus of LPS, complete carotid occlu-
sion was induced for 22 min. Five days after LPS, brains were 
collected. Pretreatment with LPS for 5 days decreased cellu-
lar apoptosis, microglial activation and reactive astrogliosis 
in response to HI injury induced 24 but not 4 h after the last 
dose of LPS. This was associated with upregulation of TLR4, 
TLR7 and IFN-β mRNA, and increased fetal plasma IFN-β con-
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to injury from other insults  [13–17] , depending on the 
time interval between exposure to infection and subse-
quent ischemia. Typically, single-dose administration of 
LPS 24 h before HI is neuroprotective, whereas LPS given 
4 and 72 h before HI exacerbates injury  [13, 18] . How-
ever, subacute clinical infection is also common and as-
sociated with adverse outcomes  [19–21] . There is limited 
information on how such longer exposure to infection 
affects the response to later HI. 

  There is evidence that delayed preconditioning and 
sensitization are largely mediated by activation of mem-
bers of the Toll-like receptor (TLR) family, which play a 
fundamental role in the initiation and activation of in-
flammatory responses to infectious and noninfectious 
stimuli  [18, 22–25] . While studies in fetal and newborn 
animals have highlighted a strong relationship between 
the TLR4 ligand, LPS and brain injury  [18, 24–26] , very 
little is known regarding the involvement of other TLRs. 
Similarly, it is unclear whether specific TLR signaling 
may represent a secondary adaptation to attenuate im-
mune responses following acute injury or conversely ex-
acerbate underlying inflammatory responses that may 
lead to injury of the developing brain. 

  Studies in adult animal stroke models suggest that nu-
merous preconditioning stimuli, including LPS, ultimate-
ly modulate TLR signaling and induce novel neuroprotec-
tive pathways  [22, 27–31] . Systemic administration of the 
TLR9 ligand CpG oligodeoxynucleotide is neuroprotec-
tive against ischemic brain injury in stroke models through 
a similar mechanism to that of TLR4 which is dependent 
on tumor necrosis factor-α (TNF-α)  [32, 33] , whereas neu-
roprotection by treatment with the TLR7 ligand gardiqui-
mod is associated with induction of type I interferons 
(IFNs) after ischemic brain injury  [34] . Furthermore, in 
the mouse brain, TLR7 and TLR9 are the only TLRs that 
exhibit a developmental increase in mRNA expression 
throughout mid-embryogenesis and early postnatal stages 
 [35]  suggesting a greater role during development.

  Based on these facts we tested the hypothesis that re-
peated exposure to a noninjurious, low dose of LPS before 
acute HI, induced by 22 min of reversible bilateral carot-
id occlusion in preterm fetal sheep at 0.65 gestation (term 
gestation  ∼ 145 days), would be associated with induction 
of TLR7 and/or TLR9 mRNA expression and other key 
inflammatory mediators within the fetal brain that are 
potentially neuroprotective. At this age, brain develop-
ment is broadly equivalent to human brain development 
at 26–28 weeks gestation  [36] .

  Cerebral ischemia was induced 4 and 24 h after the last 
dose of LPS, in view of evidence that vulnerability of the 

developing brain to HI injury is dependent on the dura-
tion of the interval between LPS exposure and subsequent 
ischemia  [18] . A simple model of acute carotid occlusion 
was used given the clinical importance of cerebral hypo-
perfusion in the pathogenesis of white matter injury  [37–
41] . This paradigm leads to diffuse white matter injury 
with no cystic or necrotic transformation on postmortem 
magnetic resonance imaging  [42, 43] , consistent with re-
cent cohorts of preterm human infants  [44–47] . 

  Materials and Methods 

 Animals and Surgical Procedures 
 The University of Auckland Animal Ethics Committee ap-

proved the experimental procedures. Romney-Suffolk cross fetal 
sheep were instrumented at 89–90 days of gestation (gestation 
0.65, term  ∼ 145 days gestation), equivalent to the human fetus of 
28 weeks of gestation  [36] . The general approach used was similar 
to that described previously  [42, 43] . Briefly, ewes were anesthe-
tized by an intravenous injection of propofol (5 mg/kg; Astra Ze-
neca Ltd., Auckland, New Zealand), and general anesthesia was 
maintained using 2–3% isoflurane in O 2 . Ewes received 5 ml of 
streptocin (250,000 IU/ml procaine penicillin and 250 mg/ml di-
hydrostreptomycin; Stockguard Labs, Hamilton, New Zealand) 
intramuscularly for prophylaxis 30 min before the start of surgery. 
During surgery, maternal fluid balance was maintained with con-
stant saline infusion, and the depth of anesthesia, maternal heart 
rate and respiration in the ewes were constantly monitored. 

  A maternal midline abdominal incision and uterotomy inci-
sion were performed to exteriorize the head, neck and forelimbs of 
the fetus. Polyvinyl catheters were placed into the right and left 
brachial arteries and veins of the fetus and amniotic sac. The ver-
tebral-occipital anastomoses between the carotid arteries and ver-
tebral arteries were ligated bilaterally to restrict blood supply to the 
carotid arteries. An inflatable silicone occluder (silicone tubing, 
Silclear, Degania Silicone, Degania Bet, Israel) was then placed 
around each carotid artery. Two pairs of electroencephalogram 
(EEG) electrodes (AS633-5SSF, Cooner Wire, Chatsworth, Calif., 
USA) were placed on the dura over the parasagittal parietal cortex 
(5 and 10 mm anterior to the bregma and 5 mm lateral) with a ref-
erence electrode placed over the occiput. Another pair of elec-
trodes was placed over the dura, 5 mm lateral to the EEG electrodes 
to measure cortical impedance  [42] . Electromyography was re-
corded to measure fetal body movement, by placing a pair of elec-
trodes into the nuchal muscle. A pair of electrodes was placed on 
the chest to measure the fetal electrocardiogram. The head and 
forelimbs of the fetus were then returned to the uterus, and the 
incisions were closed. The leads for all the electrodes were exteri-
orized via the maternal flank, and polyvinyl catheters were placed 
in the maternal saphenous vein, to provide access for postoperative 
care and euthanasia. 

  Postoperative Care 
 Following surgery, the animals were kept in metabolic cages for 

the entire period of the study, and placed in 12-hour light and 12-
hour dark cycles in a temperature-controlled room (16 ± 1   °   C, hu-
midity 50 ± 10%). Ewes were given water ad libitum and fed twice 
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daily between 9.00 and 16.00 h. A 5-day period of recovery was al-
lowed before the start of experiments. Antibiotics were given daily; 
600 mg i.v. Crystapen (benzylpenicillin sodium, Novartis, Auck-
land, New Zealand) for 4 days and 80 mg i.v. gentamicin (Pharma-
cia and Upjohn, Perth, Australia) for 3 days. Fetal vascular catheters 
were maintained patent by continuous infusion of heparinized sa-
line (10 U/ml at a rate of 0.15–0.20 ml/h). Fetal and maternal arte-
rial blood gases, pH and glucose/lactate levels were measured in 
whole blood (0.5 ml) collected daily in chilled heparin-lined sy-
ringes. Only fetuses whose arterial blood gases and lactate measure-
ments were within the normal range (P O  2  >2.27 kPa, pH >7.32; 
lactate <1.2 mmol/l) were included in the experiments. Fetal arte-
rial blood samples (1.5 ml) were collected daily for measurement of 
cytokines and centrifuged at 4   °   C for 15 min (3,000 rpm) and stored 
at –80   °   C. The first (baseline) sample was collected 24 h before ad-
ministration of saline or LPS boluses. On days 1–5 of administra-
tion of LPS or saline boluses, samples were collected at –30 min and 
1, 4 and 8 h after each bolus LPS or saline, and then 1 h after occlu-
sion and daily thereafter until postmortem assessment. 

  Experimental Design 
 Five days after surgery on day 94–95 of gestation, animals were 

randomly assigned to either control (n = 16) or treatment groups 
(n = 12). In the LPS groups, an intravenous bolus of LPS (derived 
from  Escherichia coli,  serotype 055:B5, Sigma-Aldrich, St. Louis, 
Mo., USA) was administered starting with a dose of 50 ng/kg of 
approximate weight (based on previous postmortem weights of 
fetuses on days 95–96 of gestation) of the fetus dissolved in 1 ml 
saline on day 1. For the following 4 days (days 2–5) a dose of 100 
ng/kg was given. Animals then received either cerebral hypoperfu-
sion induced by a 22-min period of bilateral carotid artery occlu-
sion, 4 h after the last bolus of LPS (i.e. on day 5; 4 h LPS-OCCL 
group, n = 6) or ischemia induced 24 h after the last dose of LPS 
(i.e. on day 6; 24 h LPS-OCCL group, n = 6). In the saline control 
groups, 1 ml of saline vehicle was administered at the same times 
as in the LPS groups, and with either occlusion 4 h after the last 
bolus (4 h Sal-OCCL, n = 5), 24 h (24 h Sal-OCCL, n = 5) after the 
last bolus or no occlusion (Sal-CON, n = 6). 

  Successful occlusion was confirmed by a sustained fall in EEG 
intensity of 5 dB or more, with a fall in spectral edge of 4 Hz or 
more during occlusion as previously described  [42] . Of the 22 an-
imals occluded, occlusion failed in 3 fetuses. Thus, the final num-
bers of completed studies were for 4 h LPS-OCCL, n = 6, 4 h Sal-
OCCL, n = 3, 24 h LPS-OCCL, n = 6, and 24 h Sal-OCCL, n = 4. 

  Postocclusion and Postmortem Assessments 
 Following occlusion or sham occlusion, the animals were mon-

itored for a further 5 days and then killed by intravenous injection 
of an overdose of pentobarbital sodium (9 g, Pentobarb 300, 
Chemstock International, Christchurch, New Zealand) for post-
mortem examination on days 104–105 of gestation. Fetuses were 
weighed and sexed. Fetal brains were rapidly removed; one hemi-
sphere was fixed in 4% paraformaldehyde in 0.1  M  phosphate
buffer, pH 7.4, for 1 week for histopathological studies, and the 
other hemisphere was slowly frozen on dry ice and then stored at 
–80   °   C for later molecular analysis. 

  Histology and Immunohistochemical Analysis 
 Brains collected postmortem were left for 1 week in fixative, 

then divided into 3 (A–C) coronal sections approximately 3–4 mm 

in thickness; the anterior section (A) included the striatum and 
cortex; the middle section (B) included the thalamus, dorsal horn 
of the hippocampus and cortex, and the posterior section (C) in-
cluded the thalamus, dorsal and ventral horn of the hippocampus 
and cortex. Sections were processed and paraffin embedded, then 
subsequently cut at 8-μm thickness with a sledge microtome at the 
level of the midstriatum (26 mm anterior to stereotaxic zero) and 
midthalamus (17 mm anterior to the stereotaxic zero). Gross his-
topathological evaluation was conducted on thionin- and acid-
fuchsin-stained sections by light microscopy with a Nikon Eclipse 
80i microscope (Nikon Instruments Inc., Tokyo, Japan).

  Oven-dried and xylene-deparaffinized sections were rehydrat-
ed in alcohol series and then washed with 0.1% PBS (phosphate-
buffered saline). Antigen unmasking was performed using citrate 
buffer (pH 6.0) by the pressure cooking method (2100 retriever, 
Prestige Medical Ltd., Blackburn, UK). Endogenous peroxidase 
was quenched by treating the sections with 1% H 2 O 2  in methanol 
for 30 min in darkness. Blocking was performed with 5% goat/
horse serum in PBS for 1 h at room temperature. Washed slides 
were then incubated with corresponding primary and secondary 
antibodies overnight at 4   °   C.

  The following primary antibodies were used: reactive microglia 
were labeled with goat anti-ionized calcium binding adapter mol-
ecule-1 antibody (1:   200, Iba-1, Abcam, Cambridge, UK), reactive 
astrocytes were labeled with mouse anti-glial fibrillary acidic pro-
tein (1:   500, GFAP, Chemicon International Inc., Temecula, Calif., 
USA), cells undergoing apoptosis were labeled with rabbit anti-
cleaved caspase-3 ASP175 (1:   200, Cell Signaling Technology, Dan-
vers, Mass., USA), immature/mature oligodendrocytes were la-
beled with mouse monoclonal anti-2′,3 ′ -cyclic nucleotide 3 ′ -phos-
phodiesterase (1:   200, CNPase, Chemicon International Inc.). 
Rabbit anti-oligodendrocyte transcription factor-2 (1:   200, Olig-2, 
Chemicon International Inc.) was used as a marker of all cells in 
the oligodendrocyte lineage  [48] . Neuronal nuclei were labeled 
with monoclonal mouse anti-NeuN (1:   200, Merck Millipore, 
Temecula, Calif., USA).

  After overnight incubation with corresponding secondary an-
tibodies (1:   200), slides were repeatedly washed in PBS, then incu-
bated with ExtrAvidin (Sigma-Aldrich) for 3 h at room tempera-
ture. Sections were then treated with SIGMAFAST TM  3,3 ′ -diami-
nobenzidine (Sigma-Aldrich) to visualize immunoreactivity and 
permanently mounted with distyrene plasticizer xylene (Sigma-
Aldrich). Negative controls were run in parallel. 

  Immunopositive cells were quantified under a Nikon Eclipse 
80i microscope   with a motorized stage and stereo investigator soft-
ware V10 (MBF Bioscience, Williston, Vt., USA). Counting and 
estimation of the immunopositive cell density were done by an 
experimenter blinded to the studies. Sampling was performed us-
ing stereological principles. The area of interest was traced at ×2 
magnification and then translated onto a grid on the section at ×40 
magnification. A fractionator probe consisting of a counting frame 
for object inclusion and exclusion was then applied. The grid size 
was 500 × 500 μm, and the counting frame size was 100 × 100 μm. 
Immunopositive cell counts for each region were later converted 
to density (cells/mm 2 ) by the equation: [estimated total counts by 
fractionator/contour area (μm 2 )] × 10 6 . Photomicrographs were 
imaged at ×40 and ×60 magnification.

  Numbers of activated microglia, reactive astroglia, activated 
caspase-3-positive cells and oligodendrocytes were quantified in 
the periventricular white matter (PVWM, coronal section A; 
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 fig. 1 a) across 1 hemisphere for each animal from 2 sections and 
counts averaged. In addition, neuronal survival was assessed in 2 
representative regions of the parasagittal cortex (coronal section B; 
 fig. 1 b) from 1 hemisphere for each animal from 2 sections and 
counts averaged. Microglial activation was determined from num-
bers of Iba-1-labeled cells showing an ameboid morphology with 
no cell processes. Reactive astrogliosis was assessed by the number 
of GFAP-labeled cells displaying hypertrophic cell bodies and cy-
toplasmic processes. Apoptosis was assessed by numbers of acti-
vated (cleaved) caspase-3-positive cells exhibiting chromatin con-
densation and nuclear fragmentation. 

  TLR7 Immunofluorescence 
 Immunofluorescence analysis was performed to determine the 

presence of TLR7 within the PVWM of paraffin-embedded brain 
sections from Sal-CON, 4 h LPS-OCCL, 4 h Sal-OCCL, 24 h LPS-
OCCL and 24 h Sal-OCCL groups. Tissue sections (8-μm thick-
ness) were rehydrated as described above. Antigen unmasking was 
performed using tris(hydroxymethyl)aminomethane (Tris)-ethyl-
enediaminetetraacetic acid (EDTA; pH 9.0) buffer, followed by 
treatment with 0.025% Triton X-100 to increase permeability. 
Blocking was performed using 10% normal goat serum in PBS. For 
TLR7 staining, tissue sections were incubated overnight at 4–8   °   C 
with rabbit anti-TLR7 antibody (1:   400, Abcam) and subsequently 
incubated overnight at 4–8   °   C with fluorescent-labeled anti-rabbit 
secondary antibody (1:   200, Alexa Fluor 488, Molecular Probes, Life 
Technologies, Carlsbad, Calif., USA). Nucleus counterstaining was 
performed using Hoechst 33258 nucleic acid stain (1:   5,000, Mo-
lecular Probes, Life Technologies). In addition, staining in the ab-
sence of primary antibody was performed as negative controls. Im-
age analysis was performed using an Olympus FluoView TM  FV1000 
confocal microscope (Olympus, Shinjuku, Tokyo, Japan).

  Cryostat Sectioning and RNA Extraction 
 Frozen brains were sectioned at the level of the midstriatum 

(section A, as depicted in  fig.  1 a), using a cryostat (CM 3050S, 

Leica Microsystems GmbH, Nussloch, Germany). Two whole co-
ronal sections of 100 μm were cut at this level for each sample, and 
these were added to 1 ml TRIzol reagent (Life Technologies), son-
icated in ice-cold water and vortexed for 2–5 min, to ensure total 
homogenization of the tissue and then stored at –80   °   C. mRNA was 
extracted using the RNeasy Mini Kit (Qiagen, Valencia, Calif., 
USA), according to the manufacturer’s instructions and stored at 
–80   °   C.

  RNA Quantification and Integrity 
 The concentration and purity of the extracted RNA were con-

firmed by a Nanodrop ND-1000 spectrophotometer (Biosciences, 
Auckland, New Zealand). The integrity and size distribution of the 
RNA was determined by performing denaturing agarose gel elec-
trophoresis and ethidium bromide staining. Briefly, RNA was elec-
trophoresed in 1% formaldehyde agarose gel, which consisted of 
1.25% of agarose in 1 × 3-(N-morpholino)propanesulfonic acid 
(MOPS) buffer (20 m M  MOPS, Free Acid; Santa Cruz Biotechnol-
ogy Inc., Dallas, Tex., USA), 5 m M  sodium acetate, 1 m M  EDTA 
(pH 7.0), and ethidium bromide was added for staining RNA. RNA 
samples were prepared by diluting 5 μg RNA samples with 5 g RNA 
loading dye [0.0016% v/v saturated bromophenol blue solution,
4 m M  EDTA (pH 8.0), 0.89  M  formaldehyde, 20% v/v glycerol, 31% 
deionized formamide and 4× MOPS]. Samples were then heated 
at 72   °   C for 5 min. Finally, samples were electrophoresed in 10× 
MOPS buffer at 90 V for 1.15 h. RNA samples suitable for down-
stream experiments were those that formed two clear bands (28S 
and 18S), and for which the intensity of the 28S band was approx-
imately double that of the 18S band. Results of the gel electropho-
resis are not shown.

  cDNA Synthesis 
 First strand cDNA synthesis was performed using a Super-

Script VILO TM  cDNA Synthesis Kit (Invitrogen TM , Life Technolo-
gies) according to the manufacturer’s instructions. For each 20-μl 
reaction, 1 μg RNA, 4 μl 5× VILO reaction mix, 2 μl 10× superscript 

PVWM

1 2

2.5 mm 3.4 mma b

  Fig. 1.  Photomicrographs depicting areas 
of the coronal section at 26 and 17 mm an-
terior to stereotaxic zero used for immuno-
histochemical analysis. Cells positive for 
Olig-2 (which labels all cells in the oligo-
dendrocyte lineage), CNPase (immature/
mature oligodendrocytes), GFAP (reactive 
astrocytes), Iba-1 (activated microglia) and 
cleaved caspase-3 (apoptosis) were count-
ed in the PVWM area ( a ; coronal section 
A), and NeuN-positive cells were counted 
in two regions (1 and 2) of the parasagittal 
cortex ( b ; coronal section B).  
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enzyme mix and nuclease-free water were added to 200 μl poly-
merase chain reaction tubes (Axygen, Union City, Calif., USA). 
Reverse transcription reactions were performed at 25   °   C for 10 
min, then at 42   °   C for 60 min and finally at 85   °   C for 5 min in a 
Mastercycler TM  (Eppendorf, Hamburg, Germany) 96-well thermal 
cycler. The cDNA produced was stored at –20   °   C.

  Primer Design, Determination of PCR Efficiency and Selection 
of Reference Genes 
 Primers for SYBR green-based detection of target genes, TLR 

subtypes 2, 3, 4, 7 and 9, interferon regulatory factors (IRF)3 and 
7 and IFN-β ( table 1 ), were ovine specific and were designed using 

Oligoperfect Designer (Invitrogen, Life Technologies). Primer and 
probe sets for target genes ( table 1 ), TNF-α, interleukins 6 (IL-6) 
and 10 (IL-10) were ovine specific and designed using the Primer 
Express software (Applied Biosystems, Foster City, Calif., USA). 
The specificity of the primers was tested using BLAST analysis 
against the NCBI database. Specificity of primers for SYBR green 
detection was also tested through qualitative PCR on cDNA. Brief-
ly, PCR was performed using forward and reverse primers. The 
PCR cycle consisted of: 94   °   C for 3 min, followed by 40 cycles at 
94   °   C for 30 s, 58   °   C for 1 min and 72   °   C for 1 min. The final exten-
sion was performed at 72   °   C for 5 min. Reactions were performed 
with a Mastercycler TM  96-well thermal cycler and PCR products 

 Table 1.  Primer sequences used in quantitative real-time PCR assays for target genes (SYBR green: TLR subtypes 
2, 3, 4, 7 and 9, IRF3, IRF7, IFN-β; TaqMan: TNF-α, IL-6 and IL-10)

Gene Primer Sequence (5′–3′) Accession No. Amplicon 
size, bp

TLR2
(ovine) 

Forward 
Reverse 

GGCTGTAATCAGCGTGTTCA
GATCTCGTTGTCGGACAGGT

NM001048231 160

TLR3
(ovine)

Forward 
Reverse 

TCAGCTCCAACTGGAGAACC
CACCCAGGAGAGAACTCTTTGA

NM001135928 150

TLR4
(ovine)

Forward 
Reverse 

TGGATTTATCCAGATGCGAAA
GGCCACCAGCTTCTGTAAAC

NM001135930 152

TLR7
(ovine)

Forward 
Reverse 

CTGGACCATCTGGTGGAGAT
GCTGGTTTCCATCCAGGTAA

NM001135059 154

TLR9
(ovine)

Forward 
Reverse

CCCTGGAGAAGCTGGACAT
GACAGGTCCACGAAGAGCAG

NM001011555 175

IRF3
(ovine) 

Forward 
Reverse 

CCCTTCACCTCGACCAGTAA
GGGACACTGAATACCAGACACA

XM_004015378 66

IRF7
(ovine) 

Forward
Reverse

GGCAAGTGCAAAGTCTACTGG
GAAGTCAAAGATGGGCGTGT

XM_004019737 108

IFN-β
(ovine)

Forward
Reverse

ACTCCTGGGGCAGTTACCTT
GTGCTGGAGCACCTCATACA

XM004023050 139

GAPDH
(ovine)

Forward
Reverse

GTCCGTTGTGGATCTGACCT
TGCTGTAGCCGAATTCATTG

NM001190390 245

TNF-α
(ovine)

Forward
Reverse
TaqMan probe

GCCCTGGTACGAACCCATCT
CTGCCCAGACTCGGCATAGT
CAGTGCTGAGATCAACCT

NM001024860 112

IL-6
(ovine)

Forward
Reverse
TaqMan probe

CCTCCAGGAACCCAGCTATG
GGTAGGGAAAGCAGAAGTCATCA
ACTCCCTCTTCACAAGC

NM001009392 101

IL-10 
(ovine)

Forward
Reverse
TaqMan probe

TGCCACAGGCTGAGAACCA
TCTCCCCCAGCGAGTTCA
CCTGACATCAAGGAGCA

NM001009327 60

GAPDH
(bovine) 

Forward
Reverse
TaqMan probe

TGCCGCCTGGAGAAACC
CCTCTGACGCCTGCTTCAC
CCAAGTATGATGAGATCAAGAA

U85042 122

18s 4352930E X03205 187
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analyzed on a 1.5% agarose gel. DNA products were purified and 
sequenced (Allan Wilson Centre, Massey University, Palmerston 
North, New Zealand) and compared to the expected target se-
quence to ensure primer specificity. 

  Optimum cDNA and primer concentrations were determined 
prior to carrying out quantitative real-time PCR experiments. For 
SYBR green detection, the amplification efficiencies were estimat-
ed with standard curves using serial dilutions of the fetal spleen 
cDNA (50, 25, 10 and 5 μg/μl) and two primer concentrations (5 
and 10 μ M ) for all genes of interest and calculated using the slope 
of a linear regression model, according to the equation: E = 10( − 1/
slope)  [49] . The following 4 reference genes were selected for sta-
bility evaluation for SYBR green detection: glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH), YWHAZ, SDHA and β-actin. 
Stability of expression among the housekeeping genes was assessed 
using the algorithm BestKeeper software application  [50] ; of the 4 
putative housekeeping genes tested, GAPDH had the most stable 
level of expression. For TaqMan-based detection, 18S ribosomal 
RNA was chosen as the housekeeping gene since it was previously 
validated for use  [51, 52] .

  Quantitative Real-Time PCR 
 TLRs 2, 3, 4, 7 and 9, IRF3, IRF7 and IFN-β transcript abun-

dance was determined by quantitative real-time PCR using SYBR 
green (Invitrogen, Life Technologies)-based detection, whereas 
TNF-α, IL-6 and IL-10 were determined by TaqMan Gene Expres-
sion Assays (Applied Biosystems). For SYBR green-based detec-
tion, singleplex amplification was performed with a total volume 
of 10 μl, containing 5 μl fast SYBR green PCR Master Mix (Mo-
lecular Probes, Life Technologies), 1 μl cDNA template, 1 μl each 
of forward and reverse primers and 2 μl nuclease-free water (Am-
bion, Life Technologies, Auckland, New Zealand). For TaqMan-
based detection, singleplex amplification was performed with a to-
tal reaction volume of 10 μl, containing 5 μl TaqMan Universal 
PCR Master Mix (Applied Biosystems), 1 μl cDNA template, 250 
n M  probe, 900 n M  forward and reverse primers and 2.75 μl nucle-
ase-free water (Ambion).

  A positive control (cDNA obtained from LPS-treated fetal 
spleen or ovine cerebellum), nontemplate control and nonampli-
fication control reactions were also included. The housekeeping 
gene, GAPDH (SYBR green) or 18S (TaqMan) was included in 
each plate to control for interplate variability. Amplification of 
gene transcripts was performed in triplicate on an ABI PRISM 
7900HT sequence detector (Applied Biosystems). For SYBR green 
detection, the thermal profile of the reaction was: 95   °   C for 10 min, 
40 cycles of denaturation and annealing/extension at 95   °   C for 1 s 
and 60   °   C for 30 s, respectively, followed by a dissociation curve at 
95   °   C for 15 s, 60   °   C for 15 s and 95   °   C for 15 s. For TaqMan-based 
detection, the thermal profile of the reaction was: melt at 95   °   C for 
15 s, anneal/extend for 40 cycles at 60   °   C for 1 min. Data were pro-
cessed with the SDS v2.1 software (Applied Biosystems). 

  Analysis of gene expression was performed using the relative 
quantification method (ΔC t  method)  [53] . The C t  value of the tar-
get gene was subtracted from the mean C t  value of the internal 
standard (housekeeping gene GAPDH or 18S) for the same sample 
to obtain a value for ΔC t . ΔΔC t  was calculated by subtracting the 
ΔC t  value of target from the calibrator sample. The mean of the 
saline group C t  values was used as a calibrator sample. n-fold 
changes in mRNA expression of target genes relative to the house-
keeping gene GAPDH or 18S were calculated by 2 –ΔΔC  t . 

  IFN-β, TNF-α, IL-6 and IL-10 Enzyme-Linked Immunosorbent 
Assays 
 IFN-β fetal plasma levels were determined using a commer-

cially available ovine specific enzyme-linked immunosorbent as-
say (ELISA; BlueGene Biotech, Shanghai, China) according to the 
manufacturer’s instructions. IFN-β ranged from 0 to 1,000 pg/ml 
with a detection sensitivity of 1.00 pg/ml. TNF-α, IL-6 and IL-10 
concentrations were measured using in-house ELISAs. TNF-α was 
detected using antibodies specific to the ovine species (Epitope 
Technologies, Melbourne, Vic., Australia; Centre for Animal Bio-
technology, University of Melbourne). Standards were ovine 
 recombinant (Protein Express, Cincinnati, Ohio, USA). TNF-α 
ranged from 0 to 10 ng/ml with a detection sensitivity of 0.354 ng/
ml. Internal quality controls were included in each assay. IL-6 was 
detected using antibodies specific to ovine IL-6 (Epitope Technol-
ogies). Standards were ovine recombinant IL-6 (Protein Express). 
The standard series ranged from 0 to 5 ng/ml. The assay sensitiv-
ity was 0.097 ng/ml and internal quality controls were included in 
each assay. IL-10 was detected using antibodies specific to the bo-
vine species (AbD Serotec, MorphoSys, Kidlington, UK). Stan-
dards were recombinant bovine IL-10 (kindly provided by Prof. G. 
Entrican, Moredun Research Institute, Scotland) and ranged from 
0 to 10 biological units/ml with a detection sensitivity of 0.086 bio-
logical units/ml  [54, 55] . Internal quality controls were included in 
each assay.

  Statistical Analysis 
 All quantitative data are presented as means ± standard error 

of the mean (SEM). Statistical significance was accepted when p < 
0.05. Changes in physiological variables (pH, blood gases, glucose 
and lactate) were assessed using repeated measures mixed-model 
analysis (SAS v9.4; SAS Institute, Cary, N.C., USA) with group and 
time as the factors as well as their interactions. Tukey’s post hoc 
test was used to perform pairwise comparisons of all group means. 
Immunohistochemical and quantitative real-time PCR data were 
statistically analyzed using ANOVA with Tukey’s post hoc test. 

  Results 

 Fetal Arterial Blood Gas and Metabolic Status 
 Baseline pH, blood gases, glucose and lactate were 

within normal physiological ranges and were not signifi-
cantly different between groups ( table 2 ). There was no 
significant interaction between group and time for arte-
rial pH, Pa CO  2 , Pa O  2 , lactate and glucose. Pairwise com-
parisons between the two factors showed that plasma lac-
tate concentrations changed significantly over time with-
in the LPS group (p < 0.05), although post hoc, no 
specific time points were significantly different by the 
Tukey test. Due to sampling difficulty, data were not 
available during and immediately after occlusion.

  Gross Histopathology 
 No overt histopathological damage was seen on thio-

nin- and acid-fuchsin-stained coronal sections in the Sal-
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CON group. Bilateral carotid artery occlusion for 22 min 
was associated with diffuse PVWM loss, with no cystic or 
necrotic transformation in any of the groups. 

  Activated Caspase-3 in the PVWM 
 There was a significant increase in expression of acti-

vated caspase-3 in the PVWM in both 4 h Sal-OCCL and 
24 h SAL-OCCL groups (p < 0.05), and the 4 h LPS-OCCL 
group (p < 0.05;  fig. 2 a–e, 3a). Activated caspase-3 in the 
PVWM of the Sal-CON was below the level of detection. 
There was no significant difference in the number of cas-
pase-3-positive cells within the PVWM between 4 h LPS-
OCCL and 4 h Sal-OCCL groups. However, LPS pretreat-
ment was associated with reduced caspase-3 expression 
in the PVWM in the 24 h LPS-OCCL group (p < 0.05).

  Microglial Activation and Reactive Astrogliosis in the 
PVWM  
 Iba-1-positive cells were increased in the Sal-OCCL 

groups compared to Sal-CON, at both 4 h (p < 0.05) and 
24 h (p < 0.05), and in the LPS-OCCL groups at both 4 h 
(p < 0.05) and 24 h (p < 0.05;  fig. 2 f–j, 3b). There was no 
significant difference in the number of Iba-1-positive 
cells between the 4 h LPS-OCCL and 4 h Sal-OCCL 
groups. However, in the 24 h LPS-OCCL group, it was 
significantly lower (p < 0.05) relative to its Sal-OCCL 
control.

  Similarly, the number of GFAP-labeled reactive astro-
cytes was significantly increased (p < 0.05) within the 
PVWM in the 4 h LPS-OCCL and Sal-OCCL (p < 0.05) 
groups compared to Sal-CON ( fig. 2 k–o, 3c). In contrast, 
the number of GFAP-positive cells in the 24 h LPS-OCCL 
group was significantly lower (p < 0.05) compared to Sal-
CON. Furthermore, GFAP expression was significantly 
lower (p < 0.05) in the 24 h LPS-OCCL group compared 
to its Sal-OCCL control and the 4 h LPS-OCCL group
(p < 0.05). 

  Oligodendrocyte Cell Number 
 The number of Olig-2-positive cells within the PVWM 

was significantly greater in the 24 h Sal-OCCL group
(p < 0.05) than in Sal-CON, and in the 4 h (p < 0.05) and 
24 h LPS-OCCL compared to Sal-CON (p < 0.05,  fig. 4 a–
e, 5a). No significant difference was observed between 4 
and 24 h LPS-OCCL and Sal-OCCL groups ( fig. 4 a). 

  In contrast, CNPase expression in the LPS-OCCL and 
Sal-OCCL groups was not significantly different from 
Sal-CON ( fig. 4 f–j, 5b). In addition, there was no signifi-
cant difference in the number of CNPase-positive cells 
between LPS-OCCL and Sal-OCCL groups at both 4 and  T
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  Fig. 2.  Representative photomicrographs of activated caspase-3, 
Iba-1 and GFAP in the PVWM. The arrows point to representative 
cells within each photo. Saline sham occlusion control = Sal-CON 
(n = 4;  a ,  f ,  k ), occlusion 4 h after saline = 4 h Sal-OCCL (n = 3;  b , 
 g ,  l ), occlusion 4 h after LPS = 4 h LPS-OCCL (n = 6;  c ,  h ,  m ), oc-

clusion 24 h after saline = 24 h Sal-OCCL (n = 4;  d ,  i ,  n ), occlusion 
24 h after LPS = 24 h LPS-OCCL (n = 6;  e ,  j ,  o ). Magnification ×40, 
scale bar = 20 μm for all photomicrographs. Insets Higher-magni-
fication images (×60) of cells indicated by arrows. 
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24 h. However, significantly more CNPase-positive cells 
were seen (p < 0.05) in the 24 h LPS-OCCL group than 
the 4 h LPS-OCCL group. Furthermore, differences in the 
morphology of CNPase-positive cells were seen between 
groups ( fig. 4 f–j). In the Sal-OCCL groups, the cells had 
fewer and stunted processes, while extended and dense 

processes were seen on CNPase-positive cells in the 24 h 
LPS-OCCL group. No difference was observed between 
the morphological characteristics of 4 h LPS-OCCL and 
Sal-OCCL groups. 

  Cortical Neuronal Density 
 The mean number of intact NeuN-positive cells in the 

parasagittal cortex in the LPS-OCCL and Sal-OCCL groups 
was not significantly different from Sal-CON ( fig. 4 k–o, 
5c). There was no significant difference in the number of 
NeuN-positive cells between the 4 and 24 h LPS-OCCL 
and Sal-OCCL groups. Cortical expression of NeuN was 
significantly greater (p < 0.05) in the 24 h LPS-OCCL group 
compared with the 4 h LPS-OCCL group.

  Differential Regulation of TLR mRNA Expression 
after HI Injury in the LPS-Pretreated Brain 
 TLR4 mRNA expression in the 24 h LPS-OCCL group 

was significantly greater (p < 0.05) than in Sal-OCCL 
( fig. 6 a), whereas the 4 h LPS-OCCL group was not sig-
nificantly different from its Sal-OCCL control. There was 
a significant increase (p < 0.05) in TLR7 mRNA expres-
sion in the 24 h LPS-OCCL group compared to Sal-OCCL 
( fig. 6 b). However, there was no significant difference in 
TLR7 mRNA expression between LPS-OCCL and Sal-
OCCL groups when occlusion was performed 4 h after 
the last dose of LPS. 

  There was no statistical difference in TLR9, TLR3 and 
TLR2 mRNA expression between either LPS-OCCL and 
Sal-OCCL groups ( fig. 6 c–e). However, there was a non-
significant trend toward lower levels in TLR9 mRNA ex-
pression in the 24 h LPS-OCCL group, compared to Sal-
OCCL, and similarly in the 24 h LPS-OCCL group com-
pared to the 4 h LPS-OCCL group.

  IRF3 and IRF7 mRNA Expression  
 Since upregulation of IFN-β expression could be the 

result of TLR4 and/or TLR7 signaling regulation, fur-
ther expression studies were undertaken to determine 
which TLR signaling pathway was involved. There were 
no significant differences in IRF3 and IRF7 mRNA ex-
pression between the LPS-OCCL and Sal-OCCL groups 
( fig. 6 f, g).

  Upregulation of IFN-β mRNA Expression after HI 
Injury in the LPS-Pretreated Brain 
 IFN-β expression was significantly upregulated (p < 

0.05) in the 24 h LPS-OCCL group compared to Sal-
OCCL, whereas there was no significant difference be-
tween 4 h LPS-OCCL and Sal-OCCL groups ( fig. 7 a). 
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  Fig. 3.  Number of activated caspase-3- ( a ), Iba-1- ( b ) and GFAP-
positive ( c ) cells in the PVWM. Cell numbers are presented as 
means ± SEM. Saline sham occlusion control = Sal-CON (n = 4), 
occlusion 4 h after saline = 4 h Sal-OCCL (n = 3), occlusion 4 h 
after LPS = 4 h LPS-OCCL (n = 6), occlusion 24 h after saline = 
24 h Sal-OCCL (n = 4), occlusion 24 h after LPS = 24 h LPS-OCCL 
(n = 6).  a  p < 0.05: significant difference from Sal-OCCL;  b  p < 0.05: 
significant difference between other groups.                         
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  Fig. 4.  Representative photomicrographs of Olig-2 and CNPase in 
the PVWM, and NeuN in the parasagittal cortex. The arrows point 
to representative cells within each photo. Saline sham occlusion 
control = Sal-CON (n = 4;  a ,  f ,  k ), occlusion 4 h after saline = 4 h 
Sal-OCCL (n = 3;  b ,  g ,  l ), occlusion 4 h after LPS = 4 h LPS-OCCL 

(n = 6;  c ,  h ,  m ), occlusion 24 h after saline = 24 h Sal-OCCL (n = 
4;  d ,  i ,  n ), occlusion 24 h after LPS = 24 h LPS-OCCL (n = 6;  e ,  j , 
 o ). Magnification ×40, scale bar = 20 μm for all photomicrographs. 
Insets Higher-magnification images (×60) of cells indicated by ar-
rows.                             
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  TNF-α, IL-6 and IL-10 mRNA Expression 
 There was no statistical difference in expression of 

TNF-α, IL-6 or IL-10 mRNA between the LPS-OCCL and 
Sal-OCCL groups ( fig. 7 b–d). 

  Expression of TLR7 Protein in the PVWM  
 TLR7-positive cells were mostly confined to cells in

the PVWM and cortical regions of the brain. Within
the PVWM, TLR7-positive cells looked morphological-
ly similar to microglia, astrocytes or oligodendrocytes 
( fig. 8 ). Intensity of staining appeared to be lower in the 
Sal-CON, 4 h Sal-OCCL, 4 h LPS-OCCL and 24 h Sal-
OCCL groups and was confined to the perinuclear region 
with some granular cytoplasmic staining. By contrast, 
TLR7 immunostaining appeared to be more intense and 
was predominantly perinuclear in nature in the 24 h LPS-
OCCL group. 

  LPS Preconditioning Triggers a Robust Fetal Plasma 
IFN-β Response to HI 
 Plasma samples were available for the 24 h LPS-OCCL 

and 24 h Sal-OCCL cohort of animals only. Plasma mea-
surements of IFN-β in the 24 h LPS-OCCL group 5 days 
after carotid occlusion were above the upper limit of the 
calibration range (1,000 pg/ml) and were greater than in  
the Sal-OCCL group (p < 0.05, 24 h LPS-OCCL 1,000.0 ± 
0.0 pg/ml, n = 5; 24 h Sal-OCCL 177.2 ± 59.8, n = 4 pg/
ml;  fig. 9 a). There were no significant differences in plas-
ma concentrations of TNF-α, IL-6 or IL-10 between 
groups ( fig.  9 b–d). Furthermore, IL-6 concentrations 
were all below the level of detection (0.097 ng/ml) for the 
24 h LPS-OCCL group.

  Discussion 

 The present study demonstrates that in preterm fetal 
sheep, repeated low-dose, noninjurious exposure to LPS 
over 5 days, with the last dose given 24 h but not 4 h be-
fore cerebral ischemia, attenuates the inflammatory and 
astroglial reaction and reduces apoptosis within the 
PVWM after 5 days of recovery. These findings are con-
sistent with previous evidence in the neonatal rat that a 
single acute exposure to LPS 24 h before HI injury typi-
cally induces preconditioning  [18] . We show for the first 
time that this preconditioning effect was associated with 
upregulation of mRNA for TLR4, TLR7 and IFN-β, and 
a considerable increase in plasma IFN-β levels, suggesting 
the possibility that IFN-β may be an important mediator 
of endogenous neuroprotection. These findings have po-

tential clinical relevance since it is widely speculated that 
subclinical infection and HI may act in concert to exacer-
bate preterm brain injury  [14, 17, 56–60] . 

  In absolute numbers, acute severe HI, as used in the 
present study, is less common than chronic prenatal
hypoxia  [12] . Nevertheless, the incidence of acute perina-
tal hypoxia in preterm infants is reported to be much 
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  Fig. 6.  mRNA expression of TLR4 ( a ), TLR7 ( b ), TLR9 ( c ), TLR3 
( d ), TLR2 ( e ), IRF3 ( f ) and IRF7 ( g ) in the preterm ovine fetal 
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malized to housekeeping gene GAPDH, and values are expressed 
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greater than at term and, in turn, is associated with a very 
high risk of PVWM damage and neurodevelopmental 
disability  [61, 62] . In the present study, moderate cerebral 
hypoperfusion induced by a 22-min period of bilateral 
carotid artery occlusion was associated with induction of 
both activated microglia and reactive astrocytes and 
apoptosis within the PVWM, consistent with previous 
studies in this paradigm  [42, 63] . Further, hypoperfusion 
was associated with a significant increase in total (Olig-
2-positive) oligodendrocytes 5 days after ischemia com-
pared to saline controls, consistent with previous findings 
in the neonatal rat and fetal sheep  [64, 65]  that acute HI 
stimulates proliferation of oligodendrocyte progenitor 
cells. In contrast, fetuses exposed to ischemia 24 h but not 
4 h after the last bolus of LPS showed marked attenuation 
of microglial induction, astrogliosis and apoptosis within 
the PVWM compared with ischemia alone. The present 
finding of a time-dependent effect of exposure to LPS and 
subsequent ischemia on the outcome of injury is highly 
consistent with studies of single acute doses of LPS in 
neonatal rats  [13, 18, 24, 66] . However, our finding that 

the severity of injury is not increased when ischemia is 
induced only 4 h after exposure to LPS is in contrast to 
the finding of sensitization to HI injury in the neonatal 
rat  [18] . This difference is likely to reflect the repeated 
LPS exposure in the present study resulting in some de-
gree of self-tolerance and cross-tolerance, as observed in 
a variety of models of brain injury  [67] . 

  Interestingly, the lack of effect with ischemia 4 h after 
LPS is in contrast to our previous findings demonstrating 
reduced microglial activation and astrogliosis with acute 
or chronic administration of LPS before asphyxia in-
duced by complete umbilical cord occlusion in preterm 
fetal sheep  [68] . The reason for this difference is unknown 
but may reflect the use of asphyxia, or the much higher 
doses of repeated LPS (1,000 ng/bolus compared to 
50/100 ng in the present study). Alternatively, it may be 
related to continuation of the chronic infusion after the 
acute asphyxial insult in the previous study. In the present 
study, we used a very low-dose, repeated noninjurious 
regime in order to produce a mild fetal immune response 
which was stopped 4 or 24 h before HI in order to mimic 
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a state of intermittent systemic inflammation  [20] . In fu-
ture studies, it will be important to investigate whether 
continued or sustained exposure to low-dose LPS during 
induction of HI has any further effect on the evolution of 
injury. The present findings of delayed protection sup-
port the view that preconditioning or cross-tolerance in-
duces a transient window of protection which is depen-
dent on gene induction and de novo protein synthesis, 
consistent with in vitro  [69, 70]  and in vivo  [71–75]  neo-
natal and adult rat models of ischemia.

  Although the molecular mechanisms that underlie 
preconditioning are unclear, it is generally accepted that 
immediate postischemic inflammation is a significant 
contributing factor to ischemic brain injury. Inflamma-
tion occurs through the action of proinflammatory cyto-
kines such as TNF-α, IL-6 and IL-1β. Production of these 
proinflammatory cytokines is initiated by signaling 

through TLRs, in particular TLR4  [76] , which recognize 
host-derived molecules released from injured tissue or 
cells as well as pathogen-associated molecular patterns 
which are present on neuronal, glial (microglia, astro-
cytes and oligodendrocytes) and endothelial cells  [23] . 
Moreover, in adult stroke models TLR4 or TLR2 deficien-
cy attenuates infarction  [77, 78]  indicating they play an 
important role in the pathogenesis of ischemic brain in-
jury. 

  Reprogramming of this inflammatory response is 
thought to be a mechanism by which LPS, a potent TLR4 
ligand, can induce protection against ischemia  [22] . Our 
data showing a significant increase in TLR4 gene expres-
sion in association with an increase in both gene expres-
sion and circulating concentrations of the anti-inflamma-
tory type 1 interferon IFN-β, in fetuses who were pro-
tected when exposed to ischemia 24 h following LPS, 

Sal-CON Sal-OCCL (4 h) LPS-OCCL (4 h)

Sal-OCCL (24 h) LPS-OCCL (24 h)

5 μm 5 μm 5 μm

5 μm5 μm

  Fig. 8.  Expression of TLR7 in the PVWM of preterm ovine fetal 
brains following LPS exposure and HI injury. Panels show repre-
sentative immunofluorescent merged images of TLR7, detected 
with rabbit anti-TLR7 antibody (green) and DNA labeled with 
Hoechst 33258 (blue). Saline sham occlusion control = Sal-CON 

(n = 4), occlusion 4 h after saline = 4 h Sal-OCCL (n = 3), occlusion 
4 h after LPS = 4 h LPS-OCCL (n = 6), occlusion 24 h after sa-
line = 24 h Sal-OCCL (n = 4), occlusion 24 h after LPS = 24 h LPS-
OCCL (n = 6). Insets ×3 magnification of a portion of each panel 
confirming staining of TLR7-positive cells. Magnification ×100.                                                              
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suggest that TLR4 signaling is redirected via the TLR4 
adapter molecule TRIF (TIR domain-containing adaptor 
protein inducing IFN-β). IFN-β is reported to be neuro-
protective against ischemia in adult models and is be-
lieved to be involved in the regulation of TLRs  [79] . Fur-
ther, TRIF-deficient mice do not show reduced infarction 
or improvement in neurological deficits following is-
chemia indicating that the TRIF signaling pathway may 
be required for protection  [80] . Thus, enhanced TLR4 
signaling to TRIF-IFN-β could potentially contribute to 
neuroprotection. A limitation of the present study is that 
gene expression and IFN-β protein changes were not as-
sessed before ischemia (i.e. at 4 and 24 h) or with LPS 
alone; further studies will be needed to evaluate the time 
course and drivers of fetal inflammation fully. 

  Our findings are consistent with studies in an adult 
mouse stroke model showing that LPS-induced protec-
tion occurs via induction of IFN-β and interferon-stimu-
lated genes through TRIF, mediated by the IRF3  [27] . 
Paradoxically, in an elegant series of studies by the same 
group, genomic profiles of mice preconditioned with the 
TLR ligands LPS and TLR9 (CpG) or brief ischemia, in-
duction of IRF7 (an inducible IRF, which is thought to be 
involved in positive regulation of type I induction  [81] ) 
but not IRF3 gene expression were demonstrated for all 
preconditioning paradigms  [28] . Importantly, they also 

showed that mice deficient in either IRF3 or IRF7 did not 
develop preconditioning after LPS  [27] . Given this, we 
undertook an examination of both IRF3 and IRF7 gene 
expression and found neither to be significantly changed. 
However, gene expression was determined 5 days after 
injury, so it is possible that any change was missed. Alter-
natively, it is possible that there could be increased nucle-
ar localization of these transcription factors to regulate 
transcription of IFN-β, as shown in adult mice  [27] . 

  Unlike TLR4 which signals through the TRIF pathway, 
TLR7 and TLR9 signaling occur preferentially through 
MyD88 and can stimulate production of type I IFNs  [82] . 
In the present study, we observed a robust increase in 
TLR7 mRNA expression, but not TLR9, occurring in as-
sociation with an increase in IFN-β expression in those 
fetuses exhibiting neuroprotection when ischemia was 
induced 24 h after LPS. Furthermore, immunofluores-
cence staining suggested substantially greater intensity of 
TLR7-immunopositive cells within the PVWM. Unfortu-
nately, we were unable to identify the specific cell type, 
due to technical difficulties. Nevertheless, this suggests 
TLR7 activation may potentially play a role in LPS-in-
duced neuroprotection. In addition, TLR7 is a more ef-
fective inducer of type I IFNs (IFN-α and IFN-β) than 
TLR4 or TLR9  [83] ; thus, LPS-induced neuroprotection 
in the developing brain may rely on activation of TLR7 
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and subsequent MyD88-dependent type I IFN produc-
tion. Consistent with this speculation, recent findings by 
Leung et al.  [34]  support neuroprotection with the TLR7 
ligand gardiquimod in an adult mouse stroke model. 

  Production of type I IFNs by TLR7 signaling is medi-
ated by IRF7, but not IRF3  [84, 85] . Whereas we were un-
able to demonstrate induction of IRF7, Leung et al.  [34]  
observed that TLR7-induced neuroprotection occurred 
in association with an increase in circulating concentra-
tions of IFN-α but not IFN-β. This is in contrast to our 
present findings of a significantly higher plasma concen-
tration of IFN-β, 5 days after ischemia in those fetuses in 
which ischemia was induced 24 h after LPS. Moreover, 
they observed that in IRF7- and TNF-deficient mice pre-
conditioned with gardiquimod, TLR7-induced neuro-
protection was dependent on IRF7-mediated induction 
of systemic levels of IFN-α but independent of TNF-α.

  In contrast to previous findings that TNF-α is required 
to establish LPS-induced preconditioning  [33] , we did 
not find a significant increase in TNF-α gene expression 
with LPS preconditioning. Potentially, this could reflect 
the relatively long time course of the present study, and 
that there was transient cerebral expression after is-
chemia. Further, we recognize that mRNA expression 
and protein levels can be discordant. A limitation of the 
present study is that plasma samples were not available at 
all time points for measurement of circulating cytokines. 
However, it is notable that 5 days following ischemia, cir-
culating concentrations of IFN-β in the 24 h LPS-OCCL 
group were above the calibration range of the assay, 
whereas no difference was observed for other cytokines 
raising the possibility that upregulation of cerebral and 

peripheral IFN-β may potentially be a critical feature of 
LPS preconditioning.

  In summary, this is the first demonstration that LPS 
preconditioning 24 h before HI in the preterm fetal sheep 
is associated with an altered TLR response to HI. Further-
more, the neuroprotective effect of LPS preconditioning is 
associated with a novel pattern of TLR mRNA expression, 
whereby LPS preconditioning induces a robust increase in 
both TLR4 and TLR7 in association with an increase in the 
neuroprotective type I IFN IFN-β. Although these data 
cannot definitively demonstrate a causal relationship, they 
suggest that TLR4 and/or TLR7 may contribute to induc-
ing expression of IFN-β and raise the intriguing possibility 
that IFN-β may mediate the neuroprotective effect of LPS 
preconditioning. Future studies are required to determine 
whether the increase in IFN-β is causally involved in en-
dogenous protection of the preterm brain.
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